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ABSTRACT 

This study simulates the impacts of higher temperatures resulting from anthropogenic climate 
change on residential electricity consumption for the nine San Francisco Bay Area counties 
(Alameda, Contra Costa, Marin, Napa, San Francisco, San Mateo, Santa Clara, Solano, and 
Sonoma). Flexible temperature response functions are estimated by climate zone, which allows 
for differential effects of days with different meant temperatures on households’ electricity 
consumption. The estimation uses a comprehensive household-level data set of billing data for 
Pacific Gas and Electric Company). The results suggest that the temperature response varies 
greatly across climate zones. Simulation results using three downscaled climate models suggest 
that for constant population the total demand for the households that were considered may 
increase by between 1 to 4 percent by the end of the century. The study further simulates the 
impacts of higher electricity prices and different scenarios of population growth.  
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1.0 Introduction 
Forecasts of electricity demand are of central importance to policy makers and utilities for 
purposes of adequately planning future investments in new generating capacity. Total 
electricity consumption in California has more than quadrupled since 1960, and the share of 
residential consumption has grown from 26 percent to 34 percent (EIA 2008). Today, electricity 
consumption from California’s residential sector alone is equivalent to 50 percent of Mexico’s 
total electricity consumption. The majority of electricity in California is provided by three 
investor-owned utilities and more than a hundred municipal utilities.  

On a per capita basis, California’s residential consumption has stayed almost constant since the 
early 1970s, while most other states have experienced rapid growth in per capita consumption. 
The slowdown in growth of California’s per capita consumption roughly coincides with the 
major energy crisis and imposition of aggressive energy-efficiency and conservation programs 
during the early 1970s (which, however, took several years to take effect). The average annual 
growth rate in per capita consumption during 1960–1973 was approximately 7 percent and 
slowed to a remarkable 0.29 percent during 1974–1995. Growth rates during the last decade of 
available data have increased to a higher rate of 0.63 percent, and this difference in growth rates 
is statistically significant. While it is impossible to test what is driving this upswing in a causal 
sense, rising temperatures and the population expansion in the hot inland areas may be 
responsible for part of this change in trend—which works against California’s aggressive 
energy-efficiency measures.  

California’s energy system faces several challenges in attempting to meet future demand (CEC 
2005). In addition to rapid population growth, economic growth and an uncertain regulatory 
environment, the threat of significant global climate change has recently emerged as a major 
factor influencing the long term-planning of electricity supply. The electric power sector will be 
affected by climate change through higher cooling demand, lower heating demand, and 
potentially stringent regulations designed to curb emissions from the sector. The current paper 
focuses on the San Francisco Bay Area. We make three specific contributions to the literature on 
simulating the impacts of climate change on residential electricity consumption.  

First, through an unprecedented opportunity to access the complete billing data of California’s 
three major investor-owned utilities, we are able to provide empirical estimates of the 
temperature responsiveness of electricity demand based on micro-data. Second, we allow for a 
geographically specific response of electricity demand to changes in weather. Third, we provide 
simulations of future electricity demand under constant and changing climate, electricity price, 
and population scenarios.  

The paper is organized as follows: Section 2 reviews the literature assessing the impacts of 
climate change on California’s electricity demand; Section 3 describes the sources of the data 
used in this study; Section 4 contains the econometric model and estimation results; Section 5 
examines simulations of the impacts of climate change on residential electricity demand; and 
Section 6 presents the conclusions. 
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2.0 Literature Review 
Historically, the literature forecasting electricity demand has focused on the role of changing 
technology, prices, incomes, and population growth (e.g., Fisher and Kaysen 1962). Early 
studies in demand estimation acknowledged the importance of weather in electricity demand 
and explicitly controlled for it to prevent biased coefficient estimates, as well as gaining 
estimation efficiency for the remaining parameters (e.g., Houthakker and Taylor 1970). 
Simulations based on econometrically estimated demand functions had focused on different 
price, income, and population scenarios while assuming a stationary climate system. The onset 
of anthropogenic climate change has added a new and important dimension of uncertainty to 
future demand, which has spawned a small body of academic literature on economic impacts 
estimation. 

The literature on climate change impacts estimation can be divided into two approaches: 
electricity demand simulation, and a statistics-based econometric approach. In the engineering 
literature, large-scale bottom-up simulation models are used to simulate future electricity 
demand under varying climate scenarios. The advantage of the simulation model approach is 
that it allows one to simulate the effects of climate change given a wide variety of technological 
and policy responses. The drawback to these models is that they contain a large number of 
response coefficients and make a large number of assumptions about the evolution of the 
capital stock for either of which there is little empirical guidance. The earliest impacts papers 
adopt this simulation approach and suggest that global warming will significantly increase 
energy consumption.  

Cline (1992) provides an early study on the impacts of climate change in his seminal book The 
Economics of Global Warming. His section dealing with the impact on space cooling and heating 
relies on an earlier report by the U.S. Environmental Protection Agency (1989). That study of the 
potential impact of climate change on the United States uses a utility planning model developed 
by Linder et al. (1987) to simulate the impact on electric utilities in the United States and finds 
that increases in annual temperatures ranging from 1.0°C–1.4°C (1.8°F–2.5°F) in 2010 would 
result in demand of 9 percent to 19 percent above estimated new capacity requirements (peak 
load and base load) in the absence of climate change. Estimated impacts rise to 14 percent and 
23 percent for the year 2055 and an estimated 3.7°C (6.7°F) temperature increase.  

Baxter and Calandri (1992) provide another early study in this literature and focus on 
California’s electricity use, employing a partial equilibrium model of the residential, 
commercial, agriculture, and water pumping sectors to examine total consumption and peak 
demand. They project electricity demand for these sectors to the year 2010 under two global 
warming scenarios: a rise in average annual temperature of 0.6°C (1.1°F) (Low scenario) and of 
1.9°C (3.4°F) (High scenario). They found that electricity use increases from the constant climate 
scenario by 0.6 percent to 2.6 percent, while peak demand increases from the baseline scenario 
by 1.8 percent to 3.7 percent.  

Rosenthal et al. (1995) focus on the impact of global warming on energy expenditures for space 
heating and cooling in residential and commercial buildings. They estimate that a 1°C (1.8°F) 
increase in temperature will reduce U.S. energy expenditures in 2010 by $5.5 billion (1991 
dollars). This reduction is likely due to reduced heating demand. 
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The economics literature has favored the statistics-based econometric approach to impacts 
estimation, which is the approach adopted in the current study. While there is much literature 
on econometric estimation of electricity demand, the literature on climate change impacts 
estimation is limited and relies on panel estimation of heavily aggregated data or cross-sectional 
analysis of more micro-level data. Mansur et al. (2008) and Mendelsohn (2003) endogenized fuel 
choice, which is usually assumed to be exogenous. They find that warming will result in 
switching towards electricity, due to increased demand for cooling. The drawback of the cross-
sectional approach is that one cannot econometrically control for unobservable differences 
across firms and households, which may be correlated with weather/climate. If that is the case, 
the coefficients on the weather variables and corresponding impacts estimates may be biased.  

Instead of looking at a cross section of firms or households, Franco and Sanstad (2008) explain 
pure time series variation in hourly electricity load at the grid level over the course of a year. 
They use data reported by the California Independent System Operator for 2004 and regress it 
on average daily temperature. The estimates show a nonlinear impact of average temperature 
on electricity load, and a linear impact of maximum temperature on peak demand. They link 
the econometric model to climate model output from three different global circulation models 
(GCMs) forced using three Intergovernmental Panel for Climate Change (IPCC) scenarios (A1Fi, 
A2, and B1) to simulate the increase in annual electricity and peak load from 2005–2099. 
Relative to the 1961–1990 base period, the range of increases in electricity and peak load 
demands are 0.9 to 20.3 percent and 1.0 to 19.3 percent, respectively.  

Crowley and Joutz (2003) use a similar approach, where they estimate the impact of 
temperature on electricity load using hourly data in the Pennsylvania, New Jersey, and 
Maryland Interconnection. Some key differences, however, are that they control for time-fixed 
effects and define the temperature variable in terms of heating and cooling degree days. They 
find that a 2°C (3.6°F) increase in temperature results in an increase in energy consumption of 
3.8 percent of actual consumption, which is similar to the impact estimated by Baxter and 
Calandri (1992).  

Deschênes and Greenstone (2007) provide the first panel data–based approach to estimating the 
impacts of climate change on residential electricity demand. They explain variation in U.S. state-
level annual panel data of residential energy consumption at the state-year level, as provided by 
the U.S. Energy Information Administration’s State Energy Data System, using flexible 
functional forms of daily mean temperatures. The identification strategy behind their paper, 
which is the one adopted here as well, relies on random fluctuations in weather to identify 
climate effects on electricity demand. The model includes state fixed effects and census division 
by year fixed effects, and controls for precipitation, population, and income. The temperature 
data enter the model as the number of days in 20 predetermined temperature intervals. The 
authors find a U-shaped response function where energy consumption is higher on colder and 
hotter days. The impact of climate change on annual energy consumption by 2099 is in the 
range of 15 to 30 percent of the baseline estimation, or $15 to $35 billion (2006 dollars). The 
panel data approach allows one to control for differences in unobservables across the units of 
observation, resulting in consistent estimates of the coefficients on temperature.   

The current paper is part of the first project using a panel of household-level electricity billing 
data to examine the impact of climate change on residential electricity consumption. Through a 
unique agreement with California’s three largest investor-owned utilities, we gained access to 
the complete billing data for the years 2003–2006. We identify the effect of temperature on 
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electricity demand using within-household variation in temperature, which is made possible 
through variation in start dates and lengths of household billing periods. Since our data set is a 
panel, we can control for household fixed effects, month fixed effects, and year fixed effects. The 
drawback of this data set is that the only other information we have about the household is the 
price of electricity purchased and the five-digit ZIP code location. The drawback of these data is 
that we cannot control for time-varying confounders at the household level; for example, 
income or installed capital. If these are correlated with weather at the household level, 
conditional on our fixed effects, our parameter estimates will be biased.  

3.0 Data 
3.1 Residential Billing Data 
The University of California Energy Institute, jointly with California’s investor-owned utilities, 
established a confidential data center, which contains the complete billing history for all 
households serviced by Pacific Gas and Electric, Southern California Edison, and San Diego Gas 
and Electric for the years 2003–2006. For this project, we received permission to access these 
data. These three utilities provide electricity to roughly 80 percent of California households.  

The data set contains the complete information for each residential customer’s bills over the 
four-year period. Specifically, we observe an identification for the physical location, a service 
account number,1 bill start date, bill end date, total electricity consumption in kilowatt-hours 
(kWh), and the total amount of the bill in U.S. dollars ($) for each billing cycle—as well as the 
five-digit ZIP code of the premises. Only customers who were individually metered are 
included in the data set. For the purpose of this paper, a customer is defined as a unique 
combination of premise and service account number.  

It is important to note that each billing cycle does not follow the calendar month, and the length 
of the billing cycle varies across households, with the vast majority of households being billed 
on a 25–35 day cycle. While data are available on additional years for some utilities, due to the 
discrepancy of the availability of billing data from each utility, the study is limited to the years 
2003 to 2006, where billing data from all three utilities are avaliable. Hereafter, this data set is 
referred to as “billing data.” Figure 1 displays the ZIP codes for which we have data; these 
include the majority of the state. 

Due to the difference in climate conditions across the state, California is divided into 16 
building climate zones, each of which requires different minimun efficiency building standards 
specified in an energy code. We expect this difference in building standards to lead to a 
different impact of temperature change on electricity consumption in each zone. We will use 
this information to separately estimate the impact of mean daily temperature on electricity 
consumption by climate zone. We assign each household to a climate zone via their five-digit 
ZIP code through a list, which we obtained from the California Energy Comission. The San 
Francisco Bay Area counties are split across five of the sixteen climate zones (1, 2, 3, 4 and 12). 
Figure 1 below maps these five climate zones across five-digit ZIP codes in the Bay Area.  

                                                      
1 Premise identification number does not change with the occupant of the residence. Service account 
number, however, does change with the occupant of the residence. 
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Figure 1. Bay Area California Energy Commission Building Climate Zones (Shaded)  

and Weather Station Locations (Pins) 

The complete billing data set contains 300 million observations, which exceeds our ability to 
conduct estimation using standard statistical software. We therefore resort to sampling from the 
population of residential households to conduct econometric estimation. We designed the 
following sampling strategy. First, we only sample from households with regular billing cycles, 
namely 25–35 days in each billing cycle, and those which have at least 35 bills over the period of 
2003–2006.2 We also remove bills with average daily consumption less than 2 kWh or more than 
80 kWh, since we are concerned that these outliers are not residential homes, but rather 
vacation homes and small-scale private manufacturing facilities. Further, our data do not 
contain single-metered multifamily homes. Our results should be interpreted keeping this in 
mind.  

From the population subject to the restrictions above, we take a random sample from each ZIP 
code, making sure that the relative sample sizes reflect the relative sizes of the population by 
ZIP code. We draw the largest possible representative sample from this population given our 
computational constraints. We proceed with estimation of our models by climate zone, which 
makes concerns about sampling weights moot. Finally, California has a popular program for 
                                                      
2 With the regular billing cycle, there should be about 48 bills for the existing households during 2003–
2006. 
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low-income families—California Alternate Rates for Energy (CARE)—where program eligible 
customers receive a 20 percent discount on electric and natural gas bills. We exclude CARE 
households from our sample.  

No single ZIP code is responsible for more than 0.5 percent of total consumption. Table 1 
displays the summary statistics of our consumption sample by climate zone for the Bay Area. 
There is great variability in average usage across climate zones, with Zone 3’s average 
consumption per bill roughly 65 percent that of the interior Zone 12. The average electricity 
price is almost identical across zones, at 13 cents per kWh. 

 

Table 1. Summary Statistics for Non-CARE Households 

   Usage per 
Bill per 
Billing Cycle 
(kWh) 

Average 
Price per 
Billing Cycle 
($/kWh) 

Percentiles Daily Mean Temperature 
Distribution in Sample (°F) 

Zone No. of 
Obs. 

No. of 
HH 

mean s.d. mean s.d 1 5 50 95 99 

1 1,459,578 31,879 550 354 0.13 0.03 34.5 37.5 54.7 77.0 80.0 

2 2,999,408 65,539 612 385 0.13 0.03 36.0 39.0 55.5 77.5 80.5 

3 3,200,851 69,875 469 307 0.13 0.02 42.0 44.3 57.0 75.0 78.0 

4 4,232,465 92,294 605 362 0.13 0.03 40.5 42.8 57.8 81.4 85.5 

12 3,123,404 68,342 721 420 0.13 0.03 38.5 40.8 58.5 84.0 87.0 

Note: The table displays summary statistics for residential electricity consumption for the sample used in estimation  
of the weather response functions and includes households in non-Bay Area counties. 

 

3.2 Weather Data 
To generate daily weather observations to be matched with the household electricity 
consumption data, we use the Cooperative Station Dataset published by National Oceanic and 
Atmospheric Administration’s (NOAA’s) National Climate Data Center (NCDC). The data set 
contains daily observations from more than 20,000 cooperative weather stations in the United 
States, U.S. Caribbean Islands, U.S. Pacific Islands, and Puerto Rico. Data coverage varies by 
station. Since our electricity data cover the State of California for the years 2003–2006, the data 
set contains 370 weather stations reporting daily data. In the data set we observe daily 
minimum and maximum temperatures, as well as total daily precipitation and snowfall. Since 
the closest meaningful geographic identifier of our households is the five-digit postal ZIP code, 
we select stations as follows. First, we exclude any stations not reporting data in all years. 
Further, we exclude stations reporting fewer than 300 observations in any single year and 
stations at elevations more than 7000 feet above sea level, which leaves us with 274 “valid” 
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weather stations for the state.3 Figure 1 displays the distribution of the subset of weather 
stations in the Bay Area as red pins. While there is good geographic coverage of weather 
stations for our sample, we do not have a weather station reporting data for each ZIP code. To 
assign a daily value for temperature and rainfall, we need to assign a weather station to each 
ZIP code. We calculate the Vincenty distance4 of a ZIP code’s centroid to all valid weather 
stations and assign the closest weather station to that ZIP code. As a consequence of this 
procedure, each weather station on average provides data for approximately 10 ZIP codes.  

Since we do not observe daily electricity consumption by household, but rather monthly bills 
for billing periods of differing length, we require a complete set of daily weather observations. 
The NCDC data have a number of missing values, which we fill in using the following 
algorithm. If a station is missing values for minimum/maximum temperature or precipitation, 
we regress the weather outcome of interest on the same variable for the 10 closest stations each 
reporting data for at least 200 days a year. We then use the predicted value from this regression 
to fill in the missing observation. If there still are missing values, due to incomplete time series 
from the 10 neighboring stations, we regress the series on the nine closest stations and use the 
predicted values. We repeat this process until all missing values for the station are filled. We 
end up with a complete set of time series for minimum temperature, maximum temperature, 
and precipitation for the 274 weather stations in our sample. To ensure that we are not 
fabricating bad-quality data, we set aside 10 percent of the observed data and pretend that these 
observations are missing. We run our algorithm on these artificially incomplete series. When 
regressing the resulting series for temperature on the actual series, the intercept of the 
regression is indistinguishable from zero, and the slope coefficient is indistinguishable from 1. 
The correlation coefficient for the two series is 0.99. For the remainder of our empirical analysis, 
we use these patched series as our observations of weather.5 

3.3 Other Data 
In addition to quantity consumed and average bill amount, all we know about the households is 
the five-digit ZIP code in which they are located. We purchased socio-demographics at the ZIP 
code level from a firm aggregating this information from census estimates (zip-codes.com).6 We 
only observe these data for a single year: 2006. The variables we will make use of are total 
population and average household income.  

                                                      
3 The cutoff of 300 valid days is arbitrary. If we limit the set of weather stations to those providing a 
complete record, we would lose roughly half of all stations. We conducted robustness checks using 
different cutoff numbers, and the estimation results are robust.  

4 The Vincenty distance takes into account the Earth’s curvature when calculating distances between two 
points. 

5 Inverse distance weighting provides an alternative approach to filling in missing temperature values, 
which, given the good fit of our algorithm, we have not explored further in this report. 

6 We simply match these variables to the five-digit ZIP code. For details on how these variables are 
constructed, please consult the vendor’s website (www.zip-codes.com). 
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4.0 Econometric Estimation 
As discussed in the previous section, we observed each household’s monthly electricity bill for 
the period 2003–2006. Equation 1 below shows our main estimating equation. It is a simple log-
linear demand equation, which has commonly been employed in aggregate electricity demand 
estimation and climate change impacts estimation (e.g., Deschênes and Greenstone 2007): 

ln(qit ) = β pDpit +γ Zit
p=1

k

∑ +α i +φm +ϕ y + ε it  ,   (1) 

where ln( )itq is the natural logarithm of household i’s electricity consumed in kilowatt-hours 
during billing period t. Dpit are our measures of temperature, which we discuss in detail below. 
Zit are observed confounders at the household level, α i  are time-invariant household fixed 

effects, φm  are month-of-year fixed effects and ϕ y  are year fixed effects. For estimation 

purposes our unit of observation is a unique combination of premise and service account 
number, which is associated with an individual and structure. We thereby avoid the issue of 
having individuals moving to different structures with more- or less-efficient capital or 
residents with different preferences over electricity consumption moving in and out of a given 
structure. 

California’s housing stock varies greatly in its energy efficiency and installed energy-consuming 
capital. We estimate Equation 1 separately for each of the four climate zones, which cover the 
Bay Area and are displayed in Figure 1. The motivation for doing so is that we would expect the 
relationship between consumption and temperature to vary across these zones, as there is a 
stronger tendency to heat in the more northern and higher-altitude zones and a stronger 
tendency to cool (but little heating happening) in the hotter interior zones of California. 

The main variables of interest in this paper are those measuring temperature. Following recent 
trends in the literature, we include our temperature variables in a way that imposes a minimal 
number of functional form restrictions in order to capture potentially important nonlinearities 
of the outcome of interest—electricity consumption—in weather (e.g., Schlenker and Roberts 
2006; Deschênes and Greenstone 2007). We achieve this by sorting each day’s mean temperature 
experienced by household i into one of k temperature bins.7 The last five columns of Table 1 
display the median, first, fifth, ninetieth, and ninety-fifth percentile of the mean daily 
temperature distribution by climate zone. To define a set of temperature bins, we split each of 
the sixteen zones’ temperature distributions into a set of percentiles and use those as the bins 
used for sorting.  

For each household and billing period we then counted the number of days the mean daily 
temperature falls into each bin and recorded this as Dpit. The main coefficients of interest to the 

                                                      
7 We use mean daily temperature as our temperature measure. This allows a flexible functional form in a 
single variable. An alternative strategy we will explore in future work is separating the temperature 
variables into minimum and maximum temperature, which are highly correlated with our mean 
temperature measure.  
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later simulation exercise are the pβ s, which measure the impact of one more day with a mean 
temperature falling into bin p on the log of household electricity consumption. For small values, 

pβ ’s interpretation is approximately the percentage increase in household electricity 
consumption due to experiencing one additional day in that temperature bin. 

Zit is a vector of observable confounding variables, which vary across billing periods and 
households. The first of two major confounders we observe at the household level is the average 
electricity price for each household for a given billing period. California utilities price 
residential electricity on a block rate structure. The average price experienced by each 
household in a given period is therefore not exogenous, since marginal price depends on 
consumption (qit). Identifying the price elasticity of demand in this setting is problematic, and 
various approaches have been proposed (e.g., Hanemann 1984; Reiss and White 2005). The 
maximum-likelihood approaches are computationally intensive, and given our sample size 
cannot be feasibly implemented here. More important, however, we do not observe other 
important characteristics of households (e.g., income) that would allow us to provide credible 
estimates of these elasticities. For later simulation we will rely on the income-specific price 
elasticities provided by Reiss and White (2005), who used a smaller sample of more-detailed 
data based on the national-level Residential Energy Consumption Survey (RECS). We have run 
our models by including price directly, instrumenting for it using lagged prices, and omitting it 
from estimation. The estimation results are almost identical for all three approaches, which is 
reassuring. While one could tell a story that higher temperatures lead to higher consumption 
and therefore higher marginal prices for some households, this bias seems to be negligible, 
given our estimation results. In the estimation and simulation results presented in this paper, 
we omit the average price from our main regression. 

The second major time-varying confounder is precipitation in the form of rainfall. We calculate 
the amount of total rainfall for each of the 274 weather stations, filling in missing values using 
the same algorithm discussed in the previous section. We control for rainfall using a second-
order polynomial in all regressions.  

The αi are household fixed effects, which control for time-invariant unobservables for each 
household. The φm are month-specific fixed effects, which control for unobservable shocks to 
electricity consumption common to all households. The yϕ are year fixed effects which control 
for yearly shocks common to all households. To credibly identify the effects of temperature on 
the log of electricity consumption, we require that the residuals conditional on all right-hand-
side variables be orthogonal to the temperature variables, which can be expressed as 

[ | , , , , ] 0it pit pit it i m yE D D Zε α φ ϕ− = . Since we control for household fixed effects, identification 
comes from within-household variation in daily temperature after controlling for shocks 
common to all households, rainfall, and average prices.  

We estimate Equation 1 for each climate zone using a least-squares fitting criterion and a 
clustered variance covariance matrix. Figure 2 plots the estimated temperature response 
coefficients for each of the climate zones against the midpoints of the bins for the percentile and 
equidistant bin approaches. The coefficient estimates are almost identical, which is reassuring. 
We do not display the confidence intervals around the estimated coefficients. The coefficients 
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are so tightly estimated that for visual appearance, displaying the confidence intervals simply 
makes the lines appear thick.8 It is important to note that we do not have data for Sacramento, 
as Sacramento is served by the Sacramento Municipal Utility District and not one of the utilities 
in our sample.  

From this figure, several results stand out. First, the graphs show tremendous heterogeneity in 
the shape of the temperature response of electricity demand across climate zones. Zone 1 has an 
almost flat temperature response function, whereas zones 2, 3, 4, and 12 have increasingly steep 
temperature response at high temperatures. All zones display a very slight negative slope at 
lower temperatures, indicating a decreased demand for space heating as temperatures increase. 
California’s households mostly use natural gas for space heating, which explains why for most 
areas we do not see a steeper negative slope at mild temperatures. This is consistent for a lower 
share of homes using electricity for heat in California (22 percent) than the national average (30 
percent). Further, many of these electric heaters are likely located in areas with very low heating 
demand, given the high cost of using electricity for heat compared to natural gas. While there is 
use of electricity for heating directly, a significant share of the increased demand at lower 
temperatures is likely to stem from the operation of fans for natural gas heaters.  

We now turn to simulating electricity demand under different scenarios of climate change using 
these heterogeneous response functions as the underlying functional form relationship between 
household electricity consumption and temperature. 

                                                      
8 The full estimation results for each zone are available from the authors upon request.  
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Figure 2. Estimated Climate Response Functions for California Energy Commission Climate Zones 

1, 2, 3, 4, and 12. The panels display the estimated temperature slope coefficients for each of the 
fourteen percentile bins (blue) and the equidistant bins (red) against the midpoint of each bin. The plots 

were normalized using the coefficient estimate for the 60°F–65°F (16°C–18°C) temperature bin. 
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5.0 Simulations 
In this section we simulate the impacts of climate change on electricity consumption using three 
different climate models each forced by two different SRES emissions scenarios, three different 
electricity price scenarios, and three different population growth scenarios. We calculate a 
trajectory of aggregate electricity consumption from the residential sector until the year 2100, 
which is standard in the climate change literature. To understand the impact of uncertainty 
surrounding these three different factors on aggregate demand, we introduce them 
sequentially. 

5.1 Temperature Simulations 
To simulate the effect of a changing climate on residential electricity demand, we require 
estimates of the climate sensitivity of residential electricity demand, as well as a projection of 
future climate under climate change. The simulation for this section uses the estimated climate 
response parameters shown in Figure 2. Using these estimates as the basis of our simulation has 
several strong implications. First, using the estimated βp parameters implies that the climate 
responsiveness of demand within climate zones remains constant throughout the century. This 
is a strong assumption, since we would expect that households in zones which currently do not 
require cooling equipment may potentially invest in such equipment if the climate becomes 
warmer. This would lead us to believe that the temperature responsiveness in higher 
temperature bins would increase over time. On the other hand, one could potentially foresee 
policy actions such as more stringent appliance standards that improve the energy efficiency of 
appliances such as air conditioners. This would decrease the electricity per cooling unit 
required, and shift the temperature response curve downward in the higher buckets.  

As is standard in this literature, the future climate is generated by three global circulation 
models (GCMs). These numerical simulation models generate predictions of past and future 
climate under different scenarios of atmospheric greenhouse gas concentrations. The 
quantitative projections of global climate change conducted under the auspices of the IPCC and 
applied in this study are driven by modeled simulations of two sets of projections of twenty-
first century social and economic development around the world, the so-called “A2” and “B1” 
storylines in the 2000 Special Report on Emissions Scenarios (SRES) (IPCC 2000). The SRES study 
was conducted as part of the IPCC’s Third Assessment Report, released in 2001.  

The A2 and B1 storylines and their quantitative representations represent two quite different 
possible trajectories for the world economy, society, and energy system, and imply divergent 
future anthropogenic emissions, with projected emissions in the A2 being substantially higher. 
The A2 scenario represents a “differentiated world” with respect to demographics, economic 
growth, resource use, energy systems, and cultural factors, resulting in continued growth in 
global carbon dioxide (CO2) emissions, which reach nearly 30 gigatons of carbon (GtC) annually 
in the marker scenario by 2100. The B1 scenario can be characterized as a “global sustainability” 
scenario. Worldwide, environmental protection and quality and human development emerge as 
key priorities, and there is an increase in international cooperation to address them as well as 
convergence in other dimensions. A demographic transition results in global population, 
peaking around mid-century and declining thereafter, reaching roughly 7 billion by 2100. 
Economic growth rates are higher than those in A2, so that global economic output in 2100 is 
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approximately one-third greater. In the B1 marker scenario, annual emissions reach about 12 
GtC in 2040 and decline to about 4 GtC in 2100.  

We simulate demand for each scenario using the National Center for Atmospheric Research 
(NCAR) Parallel Climate Model 1 (PCM), the Geophysical Fluid Dynamics Laboratory 2.1. 
Climate Model and the Centre National de Recherches Météorologiques Climate Model v3. 
These models were provided to us in their downscaled version for California using the 
Constructed Analogues (CA) algorithms (Maurer and Hidalgo 2008). There is no clear guidance 
in the literature as to which algorithm is preferable for impacts estimation. We therefore 
provide simulation results using both methods.  

To obtain estimates for a percent increase in electricity consumption for the representative 
household in ZIP code j and period t+h, we use the following relation: 
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We implicitly assume that the year fixed effect and remaining right-hand side variables are the 
same for period t+h and period t, which is a standard assumption made in the majority of the 
impacts literature.  

Figure 3 shows the change in the number of days spent in each 5-degree bin of the temperature 
distribution from 1980–1999 to 2080–2099 using the NCAR PCM forced by scenarios A2 and B1 
for San Francisco and Sacramento.9 A clear upward shift of the temperature distribution is 
apparent for both locations. For locations with upward-sloping temperature response functions, 
this entails increases in electricity consumption due to more days spent in higher-temperature 
bins. Inspecting these graphs for all major urban centers in California, in addition to the two 
displayed here, confirms what we see in Figure 3. The areas with the steepest response 
functions at higher-temperature bins happen to be the locations with highest increases in the 
number of high- and extremely high–temperature days. While this is not surprising, this 
correspondence leads to very large increases in electricity consumption in areas of the state 
experiencing the largest increases in temperature, which also happen to be the most 
temperature sensitive in demand—essentially the southeastern parts of the State of California 
and the Central Valley, not the Bay Area.  

                                                      
9 We use Sacramento here purely to demonstrate the difference in projected changes in climate for coastal 
versus interior parts of the “Bay Area.” As discussed earlier, we do not simulate impacts for the 
Sacramento region.  
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Figure 3. Change in Number of Days in Each 5-degree Temperature Bin for 2080–2099 Relative to 
1980–1999 for San Francisco and Sacramento under the IPCC SRES Scenario A2 (Black) and B1 

(White) Using the NCAR PCM with the Constructed Analogues Downscaling Method 
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The first simulation of interest generates counterfactuals using the same unit of observation 
used in estimation, which is the percent increase in residential electricity consumption by a 
representative household in each ZIP code. We feed each of the two climate model scenarios 
through Equation 2 using the 1961–1990 average number of days in each temperature bin as the 
baseline. Figure 4 displays the predicted percent increase in per-household consumption for the 
period 2080–2099 using the GFDLv3 model forced by the B1 scenario using the percentile bins. 
Figure 5 displays the simulation results for the SRES forcing scenario A2. 

 
Figure 4. B1 Scenario: Simulated Percentage Increase in Household Electricity Consumption by 

ZIP Code for 2080–2099 over 1961–1990 
The Model GFDLv3 was forced by IPCC SRES B1. White areas are either outside of the study area or 

indicate that ZIP code billing data were not available. 
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Figure 5. A2 Scenario: Simulated Percentage Increase in Household Electricity Consumption 

by ZIP Code for 2080–2099 over 1961–1990 
The Model GFDLv3 was forced by IPCC SRES A2. 

Changes in per-household consumption are driven by two factors: the shape of the weather-
consumption relationship and the change in projected climate relative to the 1961–1990 period. 
The maps show that for areas closer to the coast in the Bay Area (San Francisco, Marin, 
Oakland, and much of the peninsula), electricity demand at the household level will increase 
little by the end of the century. The increases are largest for the interior areas (e.g., Contra Costa 
County). Some ZIP codes are expected to see drops in household-level electricity 
consumption—even at the end of the current century.  

It is important to keep in mind that the current projections assume no change in the 
temperature electricity response curve. Specifically, the current simulation rules out an 
increased penetration of air conditioners in areas with currently low penetration rates (e.g., San 
Francisco) or improvements in the efficiency of these devices. The projected drops essentially 
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stem from slightly reduced heating demand. The simulation results displayed in Figure 5, 
which are the household increases in energy demand by ZIP code for the higher-emissions 
scenario A2, show almost identical spatial patterns, yet larger overall increases in demand.  

While changes in per capita demand are interesting, from a capacity planning perspective it is 
overall demand that is of central interest from this simulation. We use the projected percent 
increase in household consumption by Bay Area ZIP code and calculate the weighted overall 
average increase, using the number of households by ZIP code as weights, in order to arrive at 
an aggregate percent increase in demand. The first two columns of Table 2 display these 
simulation results for aggregate demand. Predicted aggregate demand across all ZIP codes in 
our Bay Area data set for the currently more realistic emission scenario A2 range from a 1.06 
percent increase in total demand to a 4.05 percent increase in total demand by the end of the 
century depending on the climate model employed. 

Table 2. Simulated Percent Increase in Total Bay Area Residential Electricity Consumption 
Relative to 1961–1990 for the Constant, Low-Price, and High-Price Scenarios  

Year Price 
Increase 

Over 2000 
(%) 

A2 B1 

CNRM 
(%) 

GFDL 
(%) 

NCAR 
PCM  
(%) 

CNRM 
(%) 

GFDL 
(%) 

NCAR 
PCM 
(%) 

2000-2019 +0 0.15 0.12 0.06 0.03 0.15 -0.07 

2020-2039 +0 0.22 0.74 0.02 0.21 0.37 0.05 

2040-2059 +0 0.48 1.01 0.25 0.38 0.63 0.18 

2060-2079 +0 1.20 1.98 0.56 0.51 0.98 0.17 

2080-2099 +0 2.59 4.05 1.06 0.65 1.33 0.29 

2000-2019 +0 0.15 0.12 0.06 0.03 0.15 -0.07 

2020-2039 +30 -9.45 -8.99 -9.64 -9.46 -9.31 -9.61 

2040-2059 +30 -9.22 -8.74 -9.42 -9.31 -9.08 -9.49 

2060-2079 +30 -8.56 -7.86 -9.15 -9.19 -8.76 -9.49 

2080-2099 +30 -7.31 -5.99 -8.70 -9.06 -8.45 -9.39 

2000-2019 +0 0.15 0.12 0.06 0.03 0.15 -0.07 

2020-2039 +30 -9.45 -8.99 -9.64 -9.46 -9.31 -9.61 

2040-2059 +60 -18.92 -18.48 -19.10 -19.00 -18.79 -19.16 

2060-2079 +60 -18.33 -17.70 -18.85 -18.89 -18.50 -19.16 

2080-2099 +60 -17.20 -16.02 -18.45 -18.78 -18.22 -19.06 

Note: All results use the 14 percentile temperature binning approach and the Constructed Analogues 
Downscaling Approach.  
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5.2 Temperature and Price Simulations 
The assumed flat prices from the previous section can be considered a benchmark for 
comparison. It is meaningful and informative to essentially imagine climate change imposed on 
today’s conditions. It is worth pointing out, however, that real residential electricity prices in 
California have been, on average, flat since the early-mid 1970s spike. In this section we will 
relax the assumption of constant prices and provide simulation results for increasing electricity 
prices under a changing climate. These results have been graciously provided by Sanstad, 
Johnson, Goldstein, and Franco (2009). 

While no guidance can reveal what will happen to electricity prices 20 years or further out into 
the future, we construct two scenarios. The first scenario we consider is a discrete 30 percent 
increase in real prices starting in 2020 and remaining at that level for the remainder of the 
century. This scenario is based upon current estimates of the average statewide electricity rate 
impact by 2020 of AB 3210 compliance, combined with natural gas prices, on generators within 
the electric power sector. These estimates are based on an analysis commissioned by the 
California Public Utilities Commission. This scenario represents the minimum to which 
California is committed in the realm of electricity rates. It could be interpreted as one that 
assumes very optimistic technological developments post 2030, implying that radical CO2 
reduction does not entail any cost increases.  

The second scenario we consider is one where electricity prices increase by 30 percent in 2020 
and another 30 percent in 2040 and remain at that level thereafter. We consider the additional 
price increase in mid-century as, in essence, an ”increasing marginal cost“ story. Under this 
scenario, AB 32 is successfully implemented and a path toward achieving the 2050 targets is put 
in place. These additional steps are assumed to be proportionally more expensive. 

To simulate the effects of price changes on electricity demand, we require good estimates of the 
price elasticity of demand. This paper relies on the estimates of mean price elasticity provided 
by Reiss and White (2005). Specifically, they provide a set of average price elasticities for 
different income groups, which are adopted here. Since we do not observe household income, 
we assign a value of price elasticity to each ZIP code based on the average household income 
for that ZIP code. Households are separated into four buckets, delineated by $18,000, $37,000, 
and $60,000, with estimated price elasticities of -0.49, -0.34, -0.37, and -0.29, respectively. It is 
important to note that these price elasticities are short-run price elasticities. These are valid if 
one assumes a sudden increase in prices, as we do in this paper. To our knowledge, reliable 
long-term price elasticities based on micro-data for California are not available, but in theory 
they are larger than the elasticities used in this paper. These larger elasticities would make 
prices more effective and lead us to underestimate drops in electricity consumption due to 
higher prices.  

Rows 6–10 in Table 2 present the simulation results under the two different scenarios of climate 
change given a persistent and sudden increase in electricity prices in the year 2020. Given the 
range of price elasticity estimates, it is not surprising that the simulated increases in residential 
electricity demand for the first period after the price increase are roughly 10 percent lower than 
                                                      
10 California Global Warming Solutions Act of 2006 [Assembly Bill 32 (Nuñez), Chapter 488, Statutes of 
2006]. 
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the predicted increases given constant prices. The path of electricity consumption under these 
price scenarios returns to levels 8.45–9.39 percent below the 1961–1990 reference period for the 
period 2080–2099 given the optimistic B2 emissions scenario. 

The last five rows in Table 2 present the simulation results for the high-price scenario. Given the 
significant increase in prices after 2020 and again in 2040, the consumption trajectory decreases 
by another 10 percent by the end of the century, bringing aggregate consumption significantly 
below the baseline level. For the optimistic B2 SRES scenario, this results in a drop between 
18.22 and 19.06 percent. 

5.3 Temperature and Population 
California has experienced an almost seven-fold increase in its population since 1929 (BEA 
2008). California’s population growth rate over that period (2.45 percent) was more than double 
that of the national average (1.17 percent). Over the past 50 years California’s population has 
grown by 22 million people to almost 37 million in 2007 (BEA 2008). To predict what the 
trajectory of California’s population will look like until the year 2100, many factors have to be 
taken into account. The four key components driving future population are net international 
migration, net domestic migration, mortality rates, and fertility rates. The State of California 
provides forecasts 55 years into the future, which is problematic since we are interested in 
simulating end-of-century electricity consumption. The Public Policy Institute of California has 
generated a set of population projections until 2100 at the county level, and we obtained these 
from Sanstad, Johnson, Goldstein and Franco (2009). 

The three sets of projections developed for California and its counties are designed to provide a 
subjective assessment of the uncertainty of the state’s future population. The projections present 
three very different demographic futures. In the low series, population growth slows as birth 
rates decline, migration out of the state accelerates, and mortality rates show little 
improvement. In the high series, population growth accelerates as birth rates increase, 
migration increases, and mortality declines. The middle series, consistent with (but not identical 
to) the California Department of Finance projections, assumes future growth in California will 
be similar to patterns observed over the state’s recent history, patterns that include a 
moderation of previous growth rates but still large absolute changes in the state’s population. In 
the middle series, international migration flows to California remain strong to mid-century and 
then subside, net domestic migration remains negative but of small magnitude, fertility levels 
(as measured by total fertility rates) decline slightly, and age-specific mortality rates continue to 
improve. The high projection is equivalent to an overall growth rate of 1.47 percent per year and 
results in a quadrupling of population to 148 million by the end of the century. The middle 
series results in a 0.88 percent annual growth rate and 2.3-fold increase in total population. The 
low series is equivalent to a 0.18 percent growth rate and results in a population 18 percent 
higher than today’s. Projections are available at the county level and not at the ZIP code level. 
We therefore assume that each ZIP code in the same county experiences an identical growth 
rate.  

Table 3 displays the simulated aggregate electricity demand given the three population growth 
scenarios under climate change. This table holds prices constant at the current level and 
therefore presents a “worst case scenario.” It is not surprising to see that population uncertainty 
has much larger consequences for simulated total electricity consumption compared to climate 
uncertainty or price uncertainty. The simulations for the low forcing scenario B1 and the low 
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population growth scenario show an 8 percent decrease in consumption, which is due to 
projected decreases in Bay Area population. The same figure for the medium-growth scenario 
predicts a 97–99 percent increase in demand for the B1 scenario and 99–105 percent increase for 
the A2 scenario. The worst-case high population growth scenario predicts a 205–219 percent 
increase in consumption. This, unsurprisingly, stresses that population trajectories are much 
bigger drivers of residential electricity demand than climate change.  

Table 3. Simulated Percent Increase in Residential Electricity Consumption Relative to 1961–1990 
for the Low, Middle, and High Population Scenarios 

Period Population 
Growth 

A2 B1 

CNRM 
(%) 

GFDL 
(%) 

NCAR 
PCM 
(%) 

CNRM 
(%) 

GFDL 
(%) 

NCAR 
PCM 
(%) 

2000-2019 Low 7 7 7 7 7 7 

2020-2039 Low 10 11 10 10 10 10 

2040-2059 Low 4 5 4 4 4 4 

2060-2079 Low -5 -4 -5 -5 -5 -6 

2080-2099 Low -5 -4 -7 -8 -7 -8 

2000-2019 Medium 7 7 7 7 7 7 

2020-2039 Medium 24 25 24 24 25 24 

2040-2059 Medium 48 49 47 47 48 47 

2060-2079 Medium 74 75 72 72 73 71 

2080-2099 Medium 102 105 99 98 99 97 

2000-2019 High 13 13 13 13 13 13 

2020-2039 High 45 46 45 45 45 45 

2040-2059 High 84 85 83 83 84 83 

2060-2079 High 132 134 131 130 132 130 

2080-2099 High 214 219 208 207 209 205 

 

5.4 Temperature, Population, and Prices 
Tables 2 and 3 separately show the impacts of the prices and population growth on residential 
electricity consumption in a world of simulated climate change. It is instructive to show a 
combined scenario of higher prices and population. Table 4 does just that by combining the 
medium population growth and double price increase scenarios.  
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Table 4. Simulated Percent Increase in Residential Electricity Consumption in the Bay Area 
Relative to 1961–1990 for the Middle Population Scenario Under a Two-Time 30% 

Increase in Prices 

Period A2 B1 

CNRM 
(%) 

GFDL 
(%) 

NCAR 
PCM 
(%) 

CNRM 
(%) 

GFDL 
(%) 

NCAR 
PCM 
(%) 

2000-2019 7 7 7 7 7 7 

2020-2039 12 13 12 12 13 12 

2040-2059 19 20 19 19 19 19 

2060-2079 40 41 39 39 40 38 

2080-2099 63 66 60 59 61 59 

 
It is not surprising, given the magnitude of projected population growth, that even under the 
high‐price scenario combined with the medium population growth scenario, the population of 
the Bay Area has a much larger impact on electricity consumption than does climate change. 
This, of course, is true for the state as a whole as well.  

6. Conclusions 
This study provides estimates of the Bay Area counties’ aggregate and household-level 
residential electricity demand under climate change based on a large set of panel micro-data. 
We use random and therefore exogenous weather shocks to identify the effect of weather on 
household electricity demand. We link climate zone–specific weather response functions to a 
state-of-the art downscaled global circulation model to simulate growth in aggregate electricity 
demand. We further incorporate potentially higher prices and population levels to provide 
estimates of the relative sensitivity of aggregate demand to changes in these factors.  

There are two novel findings from this paper. First, temperature response varies greatly across 
the climate zones in the Bay Area—from flat to hockey stick shaped. This suggests that 
aggregating data over the entire Bay Area may ignore important heterogeneity. Second, 
uncertainty about population, rather than uncertainty about climate change, leads to the 
greatest uncertainty regarding future demand.  

Of course, what is missing from this study is a serious examination of adaptation. Higher 
temperatures will likely lead households to purchase additional air conditioners. This extensive 
margin adjustment is not modeled in the current paper, but Auffhammer (2012) uses a two-
stage model to study the effects of both intensive and extensive margin adjustments, which will 
lead to higher climate impacts than those shown in this paper. The other factor, which we 
simply cannot model, is the impact of the emergence and installation of increasingly efficient air 
conditioners in response to more-stringent energy-efficiency standards and/or higher prices. As 
the current paper and its companion pieces should not be interpreted as forecasts, but rather as 
scenarios that do not account for potential efficiency gains, these studies underline the need for 
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such efficiency measures if there is to be any hope of reducing residential electricity 
consumption to meet California’s greenhouse gas emission–reduction goals.  
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